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We develop from our generalized null field method a generalization of the Kirchhoff,
or physical optics, approach to diffraction theory. Corresponding to each particular null
field method there is a corresponding physical optics approximation, which becomes
exact when one of the coordinates being used is constant over the surface of the scattering
body. We show how to improve these approximations by a computational procedure
which is more efficient than those introduced in the previous paper. The reradiations
from our physical optics surface sources more nearly satisfy the extinction theorem the
deeper they penetrate the interiors of scattering bodies. We find that we have to
introduce a new definition of the parts of a body’s surface that are directly illuminated
and shadowed, and we suggest that this may be more apposite in general than the usual
definition. The computational examples presented herein indicate that useful approxi-
mations to surface source densities are obtained in the umbra and penumbra of bodies.
These examples also show that our scattered fields are in several particulars superior to
those obtained from the conventional Kirchhoff approach. It is important to choose
that physical optics approximation most appropriate for the scattering body in question.
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1. INTRODUCTION

This is the second in a series of three papers in which a computationally orientated approach to
diffraction theory is developed from the optical exinction theorem (extended boundary condi-

tion). In the first paper (Bates & Wall 1977), which is henceforth referred to as (I), we presented
10-2
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80 R.H.T.BATES AND D.J.N. WALL

our general method. Here we develop a generalization of Kirchhoff’s approximate approach
to diffraction.

Bouwkamp (1954) recalls that when Kirchhoff was attempting to find tractable methods for
calculating the diffraction of waves by a hole in a plane screen, he realized that he could obtain
quite simple formulae if he were to assume that the field in the hole was identical with the field
that would be there if the screen were removed. As is now well known, the diffracted fields
calculated on the basis of this assumption are in useful agreement with experiment even when the
dimensions of the hole are only moderate in comparison with the wavelength.

The success of Kirchhoff’s approach led gradually to whatis now called (by electrical engineers,
at least) the physical optics approximation. It is assumed that the source density induced at any
point on the surface of a totally reflecting scattering body is identical with that which would be
induced in a totally reflecting infinite plane tangent to the body at the said point. An inevitable
corollary to this is that it must be assumed that no sources are induced on those parts of the body’s
surface that are not directly illuminated by the incident field. Thus, physical optics is a ‘geo-
metric optics’ type of approximation, and it is sometimes loosely referred to as geometric optics,
which is a pity because physical optics predicts several diffraction effects quite adequately
whereas conventional geometric optics does not. From now on we choose to give physical optics
the name ‘planar physical optics’ because it is exact when the scattering body becomes an
infinite plane. Bechmann & Spizzichino (1963, Ch. 3) show that planar physical optics source
densities can be usefully postulated on the surfaces of penetrable bodies.

Planar physical optics is a ‘local’ theory —when calculating the surface source density at any
point we only have to consider the incident field in a neighbourhood of the point, and it is only
there that we have to take into account the shape of the body and its material constitution. It is
a single-scattering approximation —in fact, it is a kind of Born approximation for scatterers with
well-defined boundaries. It is an ‘asymptotic’ theory (cf. Kouyoumjian 1965). Ursell (1966)
shows thatitis exact for smooth, convex bodies in the limit of infinitely high frequencies. Crispin &
Maffett (1965) point out that it gives remarkably accurate results for some bodies having linear
dimensions not much larger than the wavelength. The chief secret of its success is that it usually
predicts the scattered field most accurately where it is largest (e.g. ‘specular’ reflexions, cf.
Senior 1965).

The main defects of planar physical optics are that it can violate reciprocity and it does not
take account of multiple scattering.

We have discovered that the null field approach leads to a generalized physical optics, which
becomes exact when the surface of the totally reflecting scattering body coincides with a surface
on which the radial coordinate (of the coordinate system in which the particular null field method
being used is expressed) is constant. We find that we obtain useful approximations to the surface
source density in the penumbra and umbra of the body, something which planar physical optics
is incapable of, by definition. There are no significant theoretical differences when we apply our
ideas to sound-soft and sound-hard bodies. Consequently, we restrict this discussion to the former
(its formulae are somewhat simpler and are, therefore, more readily understood). It is easy
enough to write down the formulae for sound-hard bodies. The germs of our techniques are in a
previous account (Bates 1968), but out present generalized approach is quite new.

In § 2 we quote the formulae of planar physical optics and develop our generalized physical
optics from the generalized scalar null field method, itself developed in (I). We also give the
formulae for cylindrical (circular and elliptic) physical optics because the illustrative examples
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we present here are for cylindrical bodies (they can have any desired cross section). A numerically
efficient procedure for making significant improvements to physical optics surface source
densities is introduced in § 3.

Since physical optics is approximate, the radiations from physical optics surface sources do not
satisfy the extinction theorem, i.e. at almost every point, P say, in the interior of a scattering body
there is a finite difference between these radiations and the negative of the incident field. In § 4
we generalize a previous observation (Bates 19754) that this difference tends to decrease as P
penetrates deeper into the interior. In § 5 we present examples of surface source densities and
scattered fields computed using the circular and elliptic physical optics approximations. We
compare these computations with others obtained by inherently accurate techniques—-i.e. the
circular and elliptic null field methods, which are developed in (I)-and by planar physical
optics. We evaluate the significance of our work in § 6.

Ficure 1. Totally reflecting scattering body of arbitrary shape.

2. GENERALIZED PHYSICAL OPTICS FOR SOUND-SOFT BODIES

Figure 1 shows the surface § of a totally reflecting body of arbitrary shape embedded in the
three-dimensional space %, which is partitioned into ¥_ and ¥, the regions inside and outside
S respectively. A point O, with 7°_, is taken as origin for orthogonal curvilinear coordinates of a
kind allowing the separation of the scalar Helmholtz equation. Arbitrary pointsin " and on S are
denoted respectively by P, with coordinates (uy, uy, 43), and P’, with coordinates (uj,uy,us).
The coordinate 2" describes the outward normal direction to § at P’. The surfaces X_ and X,
on both of which the coordinate #, is constant, respectively inscribe and circumscribe S, in the
sense that they are tangent to it but do not cut it. The points of tangency between X_ and S, and
between X, and S, are Pp;y,, and Py,.. The values of u, at Py, and P, are u;_ and uj,
respectively. The part of 7', outside X', is denoted by 7', |, and the part of 7_ inside 2_ is denoted
by ¥, Other aspects of this notation are covered in § 2 of (I).

We now invoke formulae developed in §§ 2, 4 and 5 of (I). Table 1 of (I) should also be referred
to. Recall that the null field approach is predicated upon the incident field ¥, being extinguished
everywhere inside § by the scattered field ¢. We examine monochromatic fields and write

1

Yo=3 X €184 zfj,l(unk) ffj,l(”zs u, k), Pel, (2.1)

l=0j=~1
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82 R.H. T.BATES AND D.J.N. WALL

where the time factor exp (iwf) is suppressed and £ is the wave number. The ¢; ; are normalization
constants appropriate for the particular coordinate system for which j;,(+) and f’;,() are
everywhere-regular radial and angular eigenfunctions. The a; ; are constants characterizing the
form of the incident wave. Multipole expansions of the field ¥ reradiated from the sources
induced in the surface of the body are

© l A
¥ = ZZO ) lcj,lbj—,ljj,l(ulk) Y, i(ug, ug, k), PeXpy,
0j=—
o 1 A N
= lz() . Z lcj,lb}tlhg’?%(uv k) Yj,l(uz, Ug, k), PE y++) (2'2)
== j:-—

where the i:ﬂ() are the ‘outgoing’ radial eigenfunctions, which are singular at u, = 0. Note
should be taken of the functions and constants listed, for specific coordinate systems, in tables 2
through 4 and 6 of (I). The b, ;, which depend upon £, ¥, and S, are given by

biu= _fsff("’v 7p) Kjuds, (2.3)

where 7, and 7, are suitable parametric coordinates in §. Either a superscript — or a superscript +
is affixed to both b; ; and K (), the latter being defined by

i = BB, k) T (g, B) (2.4)
Ky = Jyalus, k) T (g, 05, ). (2.5)

The null field equations for sound-soft bodies can be written as
bjaita, =0 (le{0 oo je{-I—>1}) (2.6)

as follows from (4.2) of (I) and (2.3) and (2.4) of this paper.

The form of the scattered field in the Fraunhofer region (usually called ‘far field’ by electrical
engineers) is usually of interest. It is often convenient to calculate the far scattered field by using
the asymptotic form introduced in § 4 (d) of (I) to simplify the integral in (2.5) of (I). Denoting
the position vectors (with respect to O) of P and P’ by r and r’ respectively, and writing |r| = 7,

we find that
—exp (—ikr)
47y

Tﬁ = fsfj‘(Tls 72) CXp {i(r’ : i‘) k/r} dS, PE Yfar: (2.7)

where 1,, is the part of ¥, , which is far enough away from the body to be in the Fraunhofer
region (remember that this becomes increasingly distant as the wavelength decreases).

We use a tilde to denote any quantity that is computed on the basis of a physical optics
approximation, e.g. i is the physical optics scattered field, and f is the physical optics surface
source density. It is not necessary to identify which type of physical optics is implied, since it is
always clear from the context.

(a) Planar physical optics
When the incident field originates from a point, such as @ in figure 2, it is convenient to
partition § into the part S, which is directly illuminated by the source at @, and the part §_
which is shadowed from it. We define S, by stating that when P’ € §, the straight line QP does not
intersect S between Q and P, whereas when P’ e S_ the straight line @ P’ must intersect S between
@ and P’. This is illustrated in figure 2.
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The planar physical optics surface source density is defined to be
f=o, Pel

= 20¢yy/on, P'el., 2.8
where ¥ is the value of ¢, at P'. ’ ' =9

7.

Ficure 2. Directly illuminated and shadowed Freure 3. ‘Directly illuminated’ and ‘shadowed’
parts of S, for planar physical optics. Note parts of S, for generalized physical optics.
that P} is on S, whereas P; and P; areon S_. Note that P{ is on S, whereas P; and P; are

onS_.

(b) Generalized physical optics

The true surface source density is not identically zero on §_, as defined in § 2 (a) above. The
new approximate theory introduced here becomes exact for certain finite bodies. So we need
different definitions of ‘directly illuminated’ and ‘shadowed’ from those introduced in § 2 (a).

The dashed lines in figure 3 represent curved rays in space on each of which the coordinates
15 and ug have particular, constant values. On each ray the coordinate u, increases monotonically
with distance from O. We partition S into a ‘directly illuminated’ part §; and a ‘shadowed’ part
S_. For a particular ray we denote the value(s) of #; at its intersection(s) with § by w4, where
m = 1,2, ..., 1. The uy, are ordered so that they increase monotonically with m. We consider the
ray passing through a particular P’€S, and we define §; by stating that when P'eS, then
u} = uys), whereas when P’eS_ then u; = uy(,) where 7 must be greater than g. This is illustrated
in figure 3.

Although details vary between the several separable coordinate systems (cf. Morse & Feshbach
1953, Chs 5, 6, 10, 11 [refer also to works by Flammer, by Meixner & Schiafke and by Watson
quoted in (I)]; further useful details are given by Olver (1974) and Roseau (1976)), the dominant
asymptotic behaviour of the radial eigenfunctions has the same general character for all systems.
The asymptotic behaviour of A®,(+) is described for small u, by

/;(?%(“n k) Ry (lfoy ) (ko < 1), (2.9)
where z = 0 for rotational coordinate systems and # = 1 for cylindrical coordinate systems, and
where a is the factor by which #, has to be multiplied to make au, asymptotically equivalent to
conventional metrical distance (refer to table 1). For large u, the asymptotic behaviour is
characterized by

By, k) = YR+ By, k)] exp (—ikowy) [ (Raw)”  (houy > 1), (2.10)
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84 R.H.T.BATES AND D.J.N. WALL

where £, () becomes increasingly negligible as kou, increases. Also, » = 1 for rotational coordi-
nate systems and v = § for cylindrical coordinate systems. The y; ; are constants (refer to table 1).
We denote by L the maximum value of / for which the A%)(+) can be approximated by (2.10),
with £;,(+) = 0, such that (2.6) is satisfied to within an error ¢;;, where each |e; | is less than a
prescribed tolerance, ¢ say. The two types of asymptotic behaviour characterized by (2.9) and
(2.10) lie on either side of kau, = /. It follows therefore that

L < kay_—1, (2.11)
where the integer [ is a ‘factor of safety’. Since, for a given ¢, the value of [ depends upon the
shape of S, there exists no general analytic means of estimating /. Computational experience

must be relied on. Experience with spherical and cylindrical Bessel functions indicates that [ = 3
is usually adequate, and that [ = 2 often provides useful results.

TABLE 1. PARAMETERS IN ASYMPTOTIC EXPRESSIONS FOR A(%)(u,, k)
IN SEVERAL SEPARABLE COORDINATE SYSTEMS

(Note that the 'ygl)l are valid when [ > kd for the elliptic cylinder coordinate system, and when [ > kd and u > 1
for the prolate and oblate systems.)

coordinate system o ) o
circular cylinder —i(2fm)} (2]e)? (2ifm)¥ 1t 1
elliptic cylinder —il-%(2fe)t (201 d
spherical polars —1l-1(2[e) e jlt1 1
prolate spheroidal —il-1(2[e)1d it d
oblate spheroidal —il-1(2fe)1+3 i+ d

d = semifocal distance of the elliptic cylinder, prolate spheroidal, or oblate spheroidal coordinate systems.

It follows from (2.3), (2.4) and (2.6) that

72 fs f J(71575) By (g, g, B) exp ( — ikouay) dsf (ko) ~ a4 ey, (160 — Ly je{—1 1),
(2.12)
the form of which suggests that we make the substitution
ds = A(ug, us) duy dus, (2.13)

where 4(+) is found, in any particular case, by inspection of S. Note that it may not be possible
to define 4(+) uniquely at points where § ceases to be analytic, but it is always possible to treat
cach analytic region of S piecewise and define 4(-) uniquely over each piece (the surface of
bodies of physical interest cannot be so singular that they cannot be partitioned into denumerable
analytic pieces). In general, A(+) is not a single-valued function of u} and } over all of . But 4 (+)
is necessarily a single-valued function of u} and u} over §,. We define our generalized physical
optics surface source density f to be zero over S_:

F=Flupu) =0 (P'eSs.), (2.14)
which means that, if we replace fin (2.12) by f, and if the particular application we are investi-

gating allows us to treat an error of ¢ as negligible, we can immediately make use of (2.13) and
arrive at

V[ ) Bty ) ex (ko) A ) o ()
+ ~
(le{0—> L}, je{—1~>1). (2.15)
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The way in which §, is defined ensures that it spans continuously and single-valuedly the full
ranges of uy and u;, which means that the ?j,,(u;, us, k) are orthogonal over §,, with a weight
function, w(ug, u3) say, that depends upon the particular coordinate system being used. It follows

from (2.15) therefore that

. T 1 o
(A1) [0, 5) (ke ) excp (= ikous) J(up18) 5 % (ayalyi L) Tl i, B), PeS,
S0t
(2.16)

where the [, ; are the usual normalization constants. Both /; ; and w(+) are given for the separable
coordinate systems by Morse & Feshbach (1953, Chs 10 and 11).
Inspection of (2.10) indicates that, to within the tolerance to which (2.15) holds

((kowy)”[v§0) exp (ikauy)
can be replaced in (2.16) by 1/A?)(u, k). But reference to (2.9) indicates that A®)(u}, &) becomes
large everywhere on §, for all / somewhat greater than L. Recall that «] is defined to be single-

valued in u; and g on §,. Consequently, the expression

Y O w(u,‘lz) u:;) < a; lf}j l(ué’ ué: k) ’

Ugy Ug) = —5R —_—— P'eS 2.17
f( 2 3) A(u2, u3) 150751 ij’l;l\%)(ui, /C) ’ + ( )
is often almost equivalent to (2.16). The terms for / < L correspond closely to their equivalents in
(2.16). The terms for / > L are small, on account of (2.9). The terms for

le{L+1->L+n} (2.18)

are appreciably in error. However, there seems to be no sure means of deciding a priori whether
itis better to retain these terms or to discard them. We prefer to retain them because of the points
raised in the following two paragraphs. The value of n depends in general upon the shape of S,
but computational experience suggests that

Lin> koup, +1. (2.19)

When S'itself coincides with a particular surface on which #, is constant then S_is empty, S is
the whole of S and the Yj,,(ué, us, k) are orthogonal over S. If 7(+), as given by (2.17), is sub-
stituted for () in (2.3), we find on substituting (2.13) into (2.3) that (2.6) is satisfied identically
for all [e {0 - oo}, je{—{ — I}. Consequently, (2.17) is exact in such a case.

The formula on r.h.s. (2.17) is convenient because it can be computed straightforwardly
without having to incorporate tests for the applicability of asymptotic expansions of the A®)(+).
Purely numerical considerations determine the formulae used for computing the /z(z)( ) and the
17]’,( *), and the value of / at which the series is truncated.

(¢) Cylindrical physical optics
When the scattering body is an infinite cylinder (of arbitrary cross-section) we use coordinates
Uy, Uy and z, where z is a Cartesian coordinate parallel to the cylinder axis. We denote the plane
z = 0by £, and the intersection of § with 2 by C. The subscripts appended to 2 and C correspond
to those already appended to 2" and S.

Invoking the notation introduced in table 3 and §2(a) of (I), we write the incident field in
the form -

Vo= 3 [he i) Tolu b+, b) ol ], Pe,  (2.20)
m—

I1 Vol. 287. A,
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86 R.H. T.BATES AND D.J.N. WALL

where the superscripts e and o denote ‘even’ and ‘odd’ respectively. The generalized physical
optics surface source density corresponding to (2.14) and (2.17) is
Fu) =0 (PeC)
— w()) duy & [ as, Yo, (ug, k) b Yo (up, )
PAC 20 L LG HR  (us, k) L9 AR° (w3, k
The quantity dC/du, is equivalent to the quantity 4 (ug, #3) introduced in (2.13). The quantities
Uy, Uy, w(uy) and I, are listed in table 2 for circular and elliptic physical optics.

>], P'ec,. (2.21)

TABLE 2. QUANTITIES APPROPRIATE TO CYLINDRICAL PHYSICAL OPTICS

(The relevant wave functions are listed in table 3 of (I).)

circular elliptic
physical optics physical optics
Uy, U o &
w(uy) 1 (1—y2)%
I, 2n,m =0

1
2
o [ stutan oy

x denotes either e or o.

3. IMPROVEMENT TO PHYSIGCAL OPTICS

Because physical optics surface source densities are calculated from only the incident field, they
can be appreciably in error when S is concave. Multiple reflection is always significant within a
concavity in the surface of a body. The more concave S is, the larger (47, —u;_) tends to be,
thereby increasing n, as follows from (2.11) and (2.19). But, an increase in 7 is equivalent to an
increase in the number of terms in the summation on r.h.s. (2.17) that are significantly in error.
So, both our physical intuition and our heuristic mathematical reasoning indicate that it is worth
looking for an improvement to f when the surface of the scattering body has indentations,
especially if the associated computations turn out to be more economical than any known method
of evaluating f by solving an integral equation. Any improvement that we find is likely to be
useful for convex bodies as well.

When f, as given by (2.17), is substituted for fin (2.3), and (2.4) is used, it follows from (2.11),
(2.19) and the definition of z that N of the |4, ;+a;,;| will exceed ¢, where

N=(2+n+2L)n, (3.1)
which is the number of expansion coeflicients indexed by the integers j and / when
le{fL+1—~>L+n}.
We define an improved surface source density f = f (74, 7,) over all of § by

F=Joth, (3.2)
where fy = f, (uj, u3) is a physical optics source density incorporating those terms in the summation
in (2.17) for which /€ {0 — L}. The expansion coefficients differ from those in (2.17) for a reason
made clear below. We define

fo=0 (PeS)
g w) &L 8,5 i k)

T Augug) S0 520 I ARl k)

, P'eS,. (3.3)
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The ‘correction source density’ & = A(7y,7,) is defined by

L+n
h= Z 2 (Tl’ 7-2) PIES) (34)
I=L+1j=—1
where the a;; are expansion coefficients. The basis functions ¥; ; are chosen for computational
efficiency —refer to (6.3) of (I) ¢t seq. Comparison of (3.1) and (3.4) shows that there are N of the
J A

The d; , and the a; , are found, to the accuracy inherent in our definitions of L and #, by sub-
stituting, f for fin (2. 3) and invoking the null field equations (2.6). Use of (2.3), (2.4),(2.6), (2.10),

(2.13), (2.14), (2.17) and (3.2) through (3.4) shows that

E 14 L+n 14
a“=l/§ Ei dpy ””—I—z §+1J=Z—l“ v Py par ({0 —>L+n},je{—1->1), (3.5)
where .
(ﬁg L (2)/]} J‘&J‘ w(ug, uz) By 1,0 (s, k) ?,7 (w3, us, k) Ygz(“é, ug, k) duy dug (3.6)
_ 148w, k)
and Bf,j',l,l' = B? 7’ ll(uli ) - 1+ﬂj’,l'(u1, k) (3.7)
and Pigar =f [ CRICHD ?J (U, ug, k) Wy p (14, 75) ds. (3.8)

The reasoning presented between (2.10) and (2.11), together with (3.6), (3.7) and the
orthogonality (with weight function w) over S, of the Y,,( -), ensures that

D v =00 +e 0y (LUe{0>LY), (3.9)
where ¢ denotes the Kronecker delta and the ¢; ;. ;  are of the order of €. Note thate; ;,, = 0. It
follows from (3.5), therefore, to within the error (of order ¢) implicitly allowed by the definition
of L, that, for | < L,

L+n I . .
apy v+ X X Dy ey (e{0>L},je{-I 1)), (3.10)
v=L+11"==1
which when substituted into (3.5), for [ > L, gives
N T4+n v R - - .
4= ¥ X z'a’”’l@j’j”l'r (le{llL+1—~L+n}, je{-1—>1}), (3.11)
v=E+1=-
: 7
where a;, = a; 12 }"z ;v Dy (3.12)
'=0§ = —
Ltn U
and By =Piyr— = X PP (3.13)

We see from (3.12) and (3.6) that the ?zm can be computed directly from the g;, and the shape
of the body. So, (3.11) is a system of N equations which can be solved for the N unknown a; ; by
elimination. Once the a;; are found, they are substituted into (3.10), immediately giving the
d;,. Note that the latter would only equal the a;, if the &; ;,,, were all zero: this is why the
expansion coefficients in (3.3) are different from those in (2.17). The improved surface source
density fis then obtained from (3.2) through (3.4).

The procedure which we have just described has considerable computational advantages.
As we confirm in §5 it can represent a significant improvement on physical optics, and it can

11-2
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88 R.H. T.BATES AND D.J.N. WALL

approach the accuracy obtainable with the full null field method. However, the unknown o, ; are
determined from a system of only N simultaneous, linear, algebraic equations; whereas
(L+1)2 4 N equations are needed to evaluate the unknowns when the null field method is used
in the form developed in (I).

The evaluation of finvolves two main steps. First, there is the determination of the o;; from
the inversion of a matrix of order N, requiring a number of operations proportional to N3.
Secondly, there is the determination of the @, by substituting the o;, into the (L +1)? equations
(3.10), requiring a number of operations proportional to (L + 1)2 N. However, this can compare
very favourably with the full null field method which requires a number of operations propor-
tional to {(L+1)2+ N},

In § 5 we present a computational example which illustrates this improved physical optics for a
cylindrical body. We write the improved surface source density as

F(C) = Fy(up) +H(C), (3.14)

where F) is given by r.h.s. (2.21) truncated to 7 + 1 even terms and M odd terms, and with the
a,, replaced by the 4,,. The correction source density H is represented as
M+ N
H(C)= X [0 ¥5(C)—ap¥R(C)], (3.15)
m=M+1
where the ¥, (C) are chosen according to criteria discussed in § 6 (b) of (I). The evaluation of the
@, and the a,, parallels that of the d;, and the «;,. The integers 247 +1 and 2N respectively
correspond, for cylindrical bodies, to the integers L and  for arbitrarily shaped bodies.

4. EXTINCTION DEEP INSIDE BODY

It is shown in the references quoted in the paragraph containing (2.9) through (2.11) that,
whatever separable coordinate system is employed, | /; (44, k) | decreases rapidly with increasing /,
provided kow, < L,, where L, = L,(u,) is an integer which increases monotonically with ku;.
It is convenient to take L, as the largest value of / required for a multipole expansion to describe
the total field to within a specified tolerance (e.g. of the order of ¢). On replacing fin (2.3) by fit
follows from (2.1), and by analogy with (2.2), that

Li 1 “
Yo+ = 120 = lcj,l[aj,l'l'zj_,l]jj,l(ula k) X (ug, ug, k). P€ Xy, (4.1)
oy Y Nl
where = —f ff(ué, ug) Ky duj dug. (4.2)
S+

We see that the value of L, depends upon the a; ; and the shape of S, as well as upon «, and £. But
computational experience with fields expanded in eigenfunctions proper to spherical and
cylindrical polar coordinates indicates that useful results are usually obtained if

L, > kou, +1, (4.3)

where [ is introduced in (2.11). The point is that |f; ,(uy, k)| decreases rapidly with increasing

when kau, < (I—1). Note that
L <L (4.4)
since u; < uy_for Pe ¥ .
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Substituting (2.4) and (2.17) into (4.2), and using (2.10), (2.13), (3.6), (3.7) and (3.9), gives

~

L v

I;z""l a=— 2 Z KRN N e 24 E d,;Q,,” (le{0—> L}, je{-1->1}), (4.5)

V=0j"=— U=L+13'==V

where, for / < L; and I’ >i

uh, ul h‘2 (up, k) &, , ., L,
Qurar = [, [* PR ) T, 60 T ) (4.6)
] l ul’ )
On any S, whose behaviour is such that it can be a physically reasonable surface we can write
YO+ phy Yy
N , N , © 144
B¢ (uy, k) [Py (u, k) = z"Zo '”Ez A ppur z"Y” (g, us k). (4.7)
Zojra

Since the ?”( -) are a complete set of functions orthogonal over §,, with weight function w(-),
we can also write
Y; (g, ug, k) y}',z’(“é: Uz k) = I, zVZO ”E By iy y; (U U3 K) [ L (4.8)
Substitution of (4.7) and (4.8) into (4.6) gives

00 14

Qi yar = X A v B ' (4.9)

l’ =0 j"=—1"

In general we can expect the |4, ; ;»; y | to decrease rapidly with increasing ", for I” greater than
some particular integer {. The smoother S is, the smaller [ will be.

Whatever coordinate system is being used, the | B; ; ;.| are largest for values of I” close to
|/ +1). If |I'= 1| <, all terms in the summation on r.h.s. (4.9) are small, so that Q; ,,; , is small.
Inspection of (3.7) and the references quoted for (2.10) shows that |e; ;, ;| decreases as I’ —1
increases. Consequently, both double summations in (4.5) are small when Z, is small enough,
which is the same as #, being small enough. This demonstrates that

biata, =0 (4.10)

for all significant values of j and  for points P far enough inside 17,,,,. But the condition laid on
b7 by (4.10) is the same as that laid on the 4;; by the exact null field equations (2.6).

We see then that the deeper we penetrate inside the body, the more nearly does the generalized
physical optics satisfy the extinction theorem. This is an extension of our previous finding that
the differences between the true and the planar physical optics far fields scattered from a
roughened flat surface are likely to be less than the differences between the corresponding near
fields (Bates 19754).

5. APPLICATIONS

We present surface source densities on, and far fields scattered from, cylindrical bodies having
the cross sections shown in figure 4. We compare results computed by both the general null field
method developed in (I) and the physical optics approximations introduced here. We examine
planar physical optics, circular physical optics and elliptic physical optics (refer to table 2). All
computational details accord with what is described in § 6 (¢) of (I).

We compute scattered far fields either by substituting (2.10) into (2.2), or by evaluating the
integral in (2.7); remembering that, for cylindrical coordinate systems, 45, and f (1, 7,) become
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90 R.H. T.BATES AND D.J.N. WALL

b, and F(C), respectively, and the double integral in (2.7) reduces to a single integral. When
computing physical optics fields we replace 4,, and F by b,, and F respectively.

We take i, to be a plane wave incident at an angle ¢. Recall from (I) that we use the symbol C
to denote both the curve and the distance along it. We denote by C the value of C at the point on
C where ¢’ = ¢. Inspection of figure 4 shows that there is only one such point for any of the
scattering bodies which we investigate.

FTTTTTTTTITTTTTTTIT

n
|

RN ERERE R AR
0 30 60 90 120 150 180°

-k

o

1
a
(C=0)a

Ficure 4. Cylindrical scattering bodies: (a) Ficure 5. Scattered far fields (a¢) and surface
rectangular cylinder with rounded corners; source densities () for a square cylinder with
(b) elliptical cylinder; (¢) cylinder with con- rounded corners (refer to figure 4 (a)). ¢ = 0,
cavities. a=1.5), b=a,t=0.5a , circular null
field method; ———, circular physical optics;

...... , planar physical optics.

Because of the symmetries possessed by the cylinders shown in figure 4, the scattered fields are
symmetrical about ¢ = ¢ and the surface source densities are symmetrical about C = C, provided
that ¢ is chosen to be an integral multiple of n. We take advantage of this and, consequently,
only compute fields and surface sources over half their full ranges. In our graphs we only show the
magnitudes of fields and surface source densities. But remember that the phase as well as the
magnitude of a surface source density affects the corresponding scattered field. So, when the
magnitude of the latter is accurate, to within some useful tolerance, then the phase of the former
must be similarly accurate.

In figures 5 through 13 we present typical results for bodies having the cross sections shown in
figure 4. When computing the solid curves in figures 8 and 9, we chose the semi-focal distances
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of our elliptic cylinder coordinates to be the same as the semi-focal distances of the scattering
bodies. Consequently, elliptic physical optics is exact for figures 8 and 9, so that the solid curves
can be assumed accurate, to within the tolerance set by our draughtsmanship. When computing
the solid curves in figures 10 and 11, we chose the semi-focal distances of our elliptic cylinder
coordinates such that ¥} ;, occupied as much of 7_ as possible: refer to § 8 (8) of (I). Consequently,
we are confident on account of the results we have already reported in (I) that the solid curves in
figures 10 and 11 are accurate, to within the tolerance set by our draughtmanship.

TTTTTTTTTUTTTTirTrTd

4
(=
]

8 (a)

11

3 1 T N Y I A A
0 30 60 90 120 150 180°

¢—o
(b)

g
<)
= T
S
0 1 2 3
(C-0)a
F1cUure 14. Scattered far fields (a) and surface source densities () for a square cylinder with rounded corners (refer

to figure 4(a)). ¢ =0, a=1.54, b = a, t = 0.5a;
physical optics N= 11, M = 17.

, circular null field method; —~—, improved circular

Figure 14 shows the result of applying our improvement to physical optics (see §3) to a
rectangular cylinder with rounded corners. The differences between the accurate and approxi-
mate computations are almost negligible for most practical applications, and yet N was 11
while N+ M was 18. We did not need to compute any odd wave functions because of the sym-
metry of the scattering body. We point out that the computational economy of the approximate
over the exact method would be more marked for an asymmetrical body.

12 Vol. 287. A.
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6. CONCLUSIONS

A striking aspect of the computed results we present in § 5 is that our new physical optics can
make recognizable, and sometimes accurate, predictions of the surface source densities in the
umbra and penumbra of scattering bodies. Our formulae (2.14) and (2.16) can always be applied
straightforwardly, without the tedious precautions which seem to be unavoidable in general with
cither Fock theory (cf. Goodrich 1959) or the geometrical theory of diffraction —for bodies of
complicated shape the latter can, of course, provide more accurate results.

When comparing our new physical optics methods with planar physical optics we see that
they always predict forward scattered fields more accurately. They tend to be superior for all
scattering directions except close to the actual back scattering direction. Even for specular
scattering from a body with a flat surface, for which planar physical optics is ideal, our new
physical optics is not much inferior (refer to figure 7).

Our results suggest that it is important to use the type of physical optics most appropriate for
the body in question. As we have reported in (I), the efficiency of the null field method improves
as ¥y, spans more of 1, or 2., spans more of £_. We conjecture that the same criterion
should be applied to the choice of the physical optics method.

In geometrical optics, and in Kirchhoff’s approach to diffraction theory, the directly illumi-
nated and shadowed parts of a body are found by examining both the incident field and the body.
In §2(b) we introduce a definition which depends only upon the shape of the surface of the body.
It is this which allows us to predict the surface source density in the umbra and penumbra. We
suggest that our new definition of ‘illuminated’ and ‘shadowed’ might be more useful in general.
For instance, it may prove possible to replace planar physical optics with an asymptotic form of
spheroidal physical optics, obtained by taking the semi-focal distance of the spheroidal coordi-
nates to be arbitrarily large compared with the wavelength. This would have the advantage that
the asymptotic property established in § 4 would then apply to a Kirchhoff-type theory appro-
priate for extended rough surfaces.

The improvement introduced in § 3 may be very significant computationally, on two counts.
First, it is a step towards developing accurate methods which are much more efficient than the
rigorously based methods, and yet are straightforwardly related to them theoretically (the
geometrical theory of diffraction is very powerful but it is usually extremely difficult, in specific
cases, to determine the order of the differences between it and exact theory). Secondly, it is the
kind of approach from which may come useful a priori assessments of the orders of the matrices
which must be inverted to solve particular direct scattering problems to required accuracies —as
Jones (1974) and Bates (1975 4) point out, this is probably the outstanding computational problem
area for diffraction theorists.

One of us, D.J.N. Wall, acknowledges the support of a New Zealand University Grants
Committee Postgraduate Scholarship.
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